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ABSTRACT

Stochastic Volatility models are more realistic than the Black-Scholes model for

Vanilla option pricing, because risk neutrality assumption is avoided. We solve He-

ston’s stochastic volatility model, that has been solved using Monte-Carlo method

which is computationally realistic in the third dimension only; and Finite differ-

ence methods that are more efficient, but face curse of dimensionality in at least

three dimensions. This study adopts the Strang’s operator splitting method that

uses stochastically weighted sub-problems. Fourth order Runge-Kutta method for

partial differential equations are used within finite difference formulations of the

split sub-problems. Charpit method is applied in the nonlinear part of the Option

pricing model. The method has second order truncation error and is computation-

ally more realistic, which is verified by the Chicago Board of Options Exchange

data. The running time of computer powered simulations are lower than those

found in the two methods.
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Chapter 1

INTRODUCTION

1.1 Background

1.1.1 Options and hedging

Any investor has the preference to divide his or her wealth into investing in a

number of assets. A combination of such assets with an expectation of returns is

called portfolio (Joshi, 2008). It is very imperative to invest in both risk and non

risky assets-a classification based on the likelihood of quantifiable returns ( Ross,

2009). If the event of obtaining a positive return is certain, the investment is said

to be risk free. A premium bond and a bank fixed deposit are good examples of

risk free assets.

A sensible motivation for adopting a risky investment is always when its internal

rate of positive return is greater than that realized in a risk-free asset (Chertock,

2010). The rate of returns defining the value of an asset is dictated by nature of

the market. One market driver is politics, which in turn influence speculations.

For example, the firing the finance minister of the Republic of South Africa, in

2016, lead to the rand’s plummeting by a degree of 5% with respect to United
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States Dollar ( Hozman & Tichy, 2016) . The speculation that financial environ-

ment would be unfavorable owing to change brought by new appointments lead

to an increased withdrawal of United States Dollar, increasing the supply of the

Rand which lowered the Rand’s value.

Within the portfolios, different investment schemes are used to offset the risk

of adverse movement of prices of assets. For example, a transport company that

uses diesel bought from a diesel company may adopt an investment scheme to

avoid risks of adverse change in the price of the fuel. An investment scheme that

is used to offset the effect of adverse movement of a price is called a hedge, and

investing in such a scheme is called hedging (Ross, 2009). A bad hedge leads to

losses of returns. A good hedge leads to gains in returns. These hedging schemes

usually employ a combination of buying and selling of assets, that are called fi-

nancial derivatives, whose prices are affected by prices of other assets known as

the underlying ( Gomes & Michaelides, 2007).

The most common financial derivatives are options, forwards and futures. A

forward contract is a customized agreement to buy or sell an asset at a price fixed

today (Joshi , 2008). If all parties in a market agree on common guidelines of

buying and selling of forward contracts, in other words ”if forward contracts are

standardized”, then those forward contracts are called futures contracts or simply

futures (Langtangen, 2012). Unlike the forward contracts, options give the holder

the rights to buy or sell a fixed quantity of an asset at a price fixed today. The

right to buy is called a call option and the right sell is a put option (Hull, 2000).

2



Using an option or a contract is called exercising it. The price which is guaranteed

by the option is called strike price ( An et al., 2008). To exercise an option there

are many rules and the simplest of them is called the European option which can

be exercised on one specific date in future. An American option can be exercised

any day before the exercise date (Ross, 2009). If no further assumptions are made

to these two rules, then they are called Vanilla or Ordinary options.

The holder of an option is not obliged to exercise it on the exercise date. Hence,

if the underlying price rises or falls, the holder of an option may decide whether

to exercise the option or not. Thus, an option can give the holder more freedom

to exercise or not than other forms of derivatives (Schweizer, 2010).

There are a lot tangible evidence to this fact. For example, in the years around

2000, the price of jet fuel was increasing, and therefore it was predicted and spec-

ulated that the prices would increase in the next decade. Owing to this, the

South African Airways (SAA) went into a futures contract with ICE Brent Oil

Company, that provided for it to be buying a fixed amount of fuel every year

for more than half a decade (SAA, 2014). In the years starting from 2004, the

global trends in the fuel prices started to lower greatly than the agreed strike price.

Since the SAA had gone into a futures, it kept buying the fuel at an expen-

sive price while its competing companies took the advantage of the lowering prices

of fuel and hence made more profits. The SAA could not pay dividends to its

shareholders this time and it is reported that the company made losses amounting

3



to 8 billion Rands due to the bad fuel hedge (Thomas, 2015). Thus, the company

would have adopted an option as opposed to a futures contract.

In Malawi, pre-qualification of suppliers, (advertised in almost every news pa-

per), is a common means in which options are traded. The holder of the contract

is always benefiting in that goods are supplied to the holder at constant price

throughout the year. The supplier can be at a loss if prices rise higher than the

agreed price.

Since options can as well be used for hedging, they have been the most traded

derivatives since the earliest times. From the years around 1973 up to the mo-

ment, option trade has grown up to the liquidity (that is trade volume) of at least

6 billion US dollars ( Shah et al., 2012). Thus, option trade has a greater influence

to the derivatives market.

1.1.2 Ways of Option Pricing

However, by increasing liquidity in the market, the options have lead to an increase

in transaction costs. This phenomenon is called bid-offer spread. In other words,

options have increased spreads in the stock markets (Joshi , 2008). This situation

has been aggravated by the fact that most investors fail to understand options,

and hence spreads may lead to a potential loss in returns, especially if options are

not priced properly (Ross, 2009). In addition, being flexible means they should

be priced correctly and fairly to see them being honoured by the holders (Fodya,

2007). Different models and theories have been developed to price options fairly

4



in order to see them honoured on the exercise date. The most common are the

Binomial, the Black-Scholes, and the Stochastic Volatility models (Fodya, 2007).

Most of these models and theories have been constructed under the assumptions

that a market is not moving , that is, actions of buyers and sellers cannot change

the price of a market; secondly, that there is existence of liquidity in the market,

that is, stock can be bought or sold at any time whenever one wishes; thirdly,

that an investor can go short, that is, to sell a stock that one does not own, the

opposite of which is to go long; and lastly, that there are no transaction costs,

the opposite of which is the bid-offer spread (Ross, 2009). The last assumption

leads to a sure-win betting scheme which is called arbitrage (Ketcheson, 2011).

The rest assumptions are model restricted (Joshi , 2008). Clearly, most of these

assumptions are far from being realistic.

The Black-Scholes and Binomial models are the primary models that are com-

monly used to price options using available software in many financial institutions

(Joshi , 2008). Both of these models are based on the same theoretical assumptions

that all risks can be eliminated, in other words ”there is risk-neutral evaluation

”, and that given that the initial price of underlying price is known or specified,

the next change in price is dependent on the present change but independent of

the past (Kuo, 2002). The second assumption is known as Brownian motion , and

the memory-less property in the second assumption is called the Markov property

(Ross, 2009). The stochastic process that satisfies Brownian motion is denoted

{Z} and it goes to states {z}.
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1.1.2.1 Black-Scholes Option Pricing Model

Black-Scholes option pricing model is the partial differential equation,

∂f

∂t
+ rs

∂f

∂s
+
σ2s2

2

∂2f

∂s2
− rf = 0. (1.1)

, where s = S(t) is the price of the underlying asset at time t, f = f(s, t) = C

is the unknown price of an option of which the underlying price is s at time t, r

is the risk-neutral continuously compounded nominal interest rate, and σ is the

volatility ( Black & Scholes, 1973).

1.1.2.2 Binomial Model

The binomial model for option pricing is based upon a special case in which the

price of a stock over some period can either go up by u percent or down by d per-

cent (Ross, 2009). If S is the current price then next period the price will be either

Su = S(1 + u) or Sd = S(1 + d). If a call option is held on the stock at an exercise

price of E, then the payoff on the call is either Cu = max(Su − E, 0) or Cd =

max(Sd−E, 0). Let the risk-free interest be r and assume d < r < u (Hull, 2000).

The equation

C0 = S0

∑N
i=a

(
N
i

)
qN−i (1−q)i−Ke−rT

∑N
i=a

(
N
i

)
qN−i(1−q)i = S0Q1−Ke−rTQ2, a =

1, 2, · · · , N , where q = uqe−r∆t, q = er∆t−d
u−d , u = er∆t−d

q
+ d and T is maturity pe-

riod, is a binomial model.

A binomial model can be used in a situation in which one wants to price an

option for a motor vehicle fuel in whose value in each time period is its price in

the increases by a rate say u = 25% and decreases by a rate say d = 20% in a
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situation in which the bank rate (risk-free rate) is say r = 8%. American option

can be more realistic in this case, explaining why a binomial model is needed (

Bot et al., 2013).

1.1.2.3 Stochastic volatility model

The fact that options are used to hedge out risks shows that the risk-neutral as-

sumption is unrealistic (Hull, 2000). Secondly, any Brownian motion occurs if the

change in the underlying price has a Markov property (Ross, 2009). However, it

has been shown by researchers that , in cases where risk can not be neglected, the

volatility of underlying price tends to have long-term memory (So, 2002), that is,

future volatility tends to depend on past ones. Thus, the second assumption is

equally unrealistic.

This partially explains why the Black-Scholes model fails to accurately price op-

tions with an American style of exercising them. It does not consider the steps

along the way where there could be possibility of early exercise of an American

option (Kuo, 2002). To avoid this problem, one can use the binomial model that

breaks down the time interval into potentially a large number of intervals or steps.

Therefore it is more accurate than the Black-Scholes Model for an American Op-

tion.

However, owing to the Brownian motion and the risk-neutral assumptions, both

of these models tend to under estimate option prices. In particular, the Binomial

model has the disadvantage that it is very slow even with fastest of the modern
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day computers ( Zariphopoulou, 2001). This has led many researchers to the in-

clusion of corrections to the option pricing model leading also to a class of models

for optional pricing called stochastic volatility models that may be constructed

through functions called utility functions (Grasselli & Hurd, 2007) or by simply

including a risk aversion parameter (γ) in a model to quantify the degree of any

attempt to reduce uncertainty taken by a holder of an option (Betteridge, 2005).

This is done through a process that is equivalent to Fourier series analysis of

a partial differential equation. For example, the partial differential equation (1.1)

can be transformed under Fourier series to include the stochastic volatility as-

sumption to obtain the model (Fodya, 2007)

ct =
1

2

(
s2σ2css + 2bρsσcsy + b2cyy

)
+

(
a− bρ(µ− r)

σ

)
cy+

γ

2
b2(1−ρ2)(cy)

2−(µ− r)2

2γσ2
,

(1.2)

where µ is the expected drift in price, ρ is the correlation between the volatility

driving random variable y representing non-traded assets values and s. The vari-

ables a and b are constants, and their roles are explained in the methodology.

The main set back to using the stochastic volatility models is that of their being

complicated or not leading to closed solutions under more realistic assumptions

(Zariphopoulou, 2001). For example, the Black-Scholes model has closed solution

under European option assumption (Ketcheson, 2011), but a stochastic volatil-

ity model that can be deduced from this model under the same assumption may

not have a closed solution (Betteridge, 2005). Since accuracy matters, different
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numerical methods can be used to obtain solutions in such cases (Langtangen,

2012).

1.2 Efficiency and Operator Splitting Method

In numerical methods, efficiency means that a method is accurate, computationally

realistic, cheap in computational resources (especially time), and strongly stable (

Faou, 2011). In this study, efficiency means that a method gives numerically real-

istic solution while using cheap computational resources. The main computation

resource being computer processing unit time. We adopt this definition because

there is no closed solution to the partial differential equation (1.2) (Grasselli &

Hurd, 2007), so we cannot expect an accurate solution but a computationally re-

alistic one.

The second reason is that one can always use a stable operator splitting scheme

(Estep & Ginting, 2008). For this to make sense, we explain the meaning of op-

erator splitting technique. The operator splitting method is a divide-and-conquer

strategy which involves decomposition of unwieldy systems of partial differential

equations into simpler subproblems and treat them individually using specialized

numerical algorithms (Chertock, 2010).

The decomposition can be done based on physical interpretations of the oper-

ators in a model, which is called differential splitting or based on the complexity

of the algebraic operations which is referred to as algebraic splitting ( Harwood,

2011). For example, to use operator splitting technique, one assumes that a time

9



partial change in a quantity ∂c/∂t is a sum of operators say L1 and L2, which is the

partial differential equation ∂c/∂t = L1 + L2 (Huang et al, 2011). The operators,

contribute differently to the partial change, and hence one can assign random or

stochastic weights A and B to the operators to represent their contributions to the

partial changes. This can allow for solving of the separate equations A∂c/∂t = L1,

B∂c/∂t = L2, and A + B = 1, instead of the equation ∂c/∂t = L1 + L2. It is

always possible to chose a stable scheme for each sub-problem (Harwood, 2011).

1.3 Problem Statement

This research intends to improve the works of researchers Betteridge (2005) and

Fodya (2007), who solved the stochastic volatility model for option pricing (1.2)

using full model methods, by using operator splitting technique.

The two authors, as well as many others like So (2002), have solved the op-

tion pricing problem under the stochastic volatility assumption rather than the

Black-Scholes model with less realistic assumptions nor the binomial model which

is more realistic but has convergence problems. These researchers have solved this

problem using partial differential equations via finite different schemes, Monte

Carlo Methods of different kinds like the Bayesian modeling method.

The operator splitting method is a divide-and-conquer strategy which involves

decomposition of unwieldy systems of partial differential equations into simpler

subproblems and treat them individually using specialized numerical algorithms

(Chertock, 2010). The decomposition can be done based on physical interpreta-

10



tions of the operators in a model, which is called differential splitting or based

on the complexity of the algebraic operations which is referred to as algebraic

splitting (Harwood, 2011). This clearly means that this method is dimension and

assumption adaptive, because it is possible to obtain subproblems each having

only one differential operator only (Langtangen, 2012).

Thus, one can use all the methods that have been adopted by some recent re-

searchers, including those they have not been used in order to avoid violating the

assumptions (Grasselli & Hurd, 2007). These can be applied in the subproblems

rather than the whole problem, and then combine the solutions, a process called

recoupling (Harwood, 2011). Recoupling requires high order skills so as to obtain

solutions that can be compared with those from previous research works. The

approach has been used mainly in natural sciences to solve Schrodinger equations

and has proved to be fast and accurate (Langtangen, 2012).

1.4 Research Objectives

1.4.1 Main Objective

The main objective of the research is to explore the efficiency of operator splitting

method for option pricing via a stochastic volatility model.

1.4.2 Specific Objectives

Specifically we would like to

1. solve the stochastic volatility model using the operator splitting technique.
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2. develop a computer program to implement an algorithm for computer sim-

ulations of the solution of the option pricing model and

3. compare the results of the operator splitting technique with the results of

the current methods in use.

1.5 Rationale

The operator splitting technique is a well-established branch of mathematics that

also deserves more likelihood of it being applied in financial modeling. The method

is easy if it is successfully applied to solve a partial differential equation modeling

a phenomena (Ikonen & Toivanen, 2005). This is so because algebraic splitting is

used to obtain simpler sub-problems each with a well known quadrature (Chertock,

2010). This is an advantage because choosing appropriate method ensures that

convergence, consistency, and stability are checked within sub-problems. If ap-

propriate recombination scheme is used, these qualities are amplified to the whole

problem (Harwood, 2011). Therefore, operator splitting method is a computation-

ally efficient method, which means realistic solutions are obtained with polynomial

time complexity.

1.6 Scope of this Dissertation

The study’s main contribution is the construction of an operator splitting method

that is more efficiently applied to harder and more realistic stochastic volatility

models. In Chapter 2 relevant literature is reviewed to clarify the problem being

solved in the study. In Chapter 3, a theoretical overview explaining the feasibility
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of the method developed is explained in details. Chapter 4 presents the results

of the numerical methods and relevant comparisons are given and explained in

details. Finally, chapter 5 presents the conclusion and further work suggested by

this work.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

The option pricing models which arise from the stochastic volatility models are

usually multidimensional partial differential equations possessing forms that can-

not be expressed in terms of known elementary functions (Joshi , 2008). Therefore,

researchers have usually used numerical methods to solve these models (Langtangen,

2012). These numerical methods have ranged from finite difference, Monte Carlo,

finite element, midpoint, trapezoidal, to Euler-Lagrange methods of numerical in-

tegration (Ross, 2009), just to mention a few.

Some authors classify these methods into two groups: those that are dimension

adaptive and those that are not. The Monte Carlo methods are dimension adap-

tive (Gomes & Michaelides, 2007). These methods have been used by researchers

as well as traders of options to set prices of option in order to communicate to

buyers at a right time (O’ Sullivan , 2010). This is so because the closed form

solutions of the stochastic volatility models are rare (Ikonen & Toivanen, 2004).

However, the invention of computers and software has led to the faster availability

of results (Kuo, 2002). Since the invention of the Black-Scholes option pricing
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model (Black & Scholes , 1973) represented by equation (1.1), the trade in op-

tions has increased. Hence, efficient ( that is fast and computationally realistic)

methods are still needed. A lot of research work has been published to take care

of this need.

2.2 Classical Numerical Methods

The work of Fodya (2007), as noted earlier, uses the finite difference methods to

solve differential equations emanating from the stochastic differential equations

under stochastic volatility modeling up to two dimensions. It follows the works

of other researchers like Betteridge (2004), and So (2002) which have adopted the

use of different kinds of Monte Carlo simulations and the Bayesian modeling. The

results of the finite difference are compared with the results of past works of Monte

Carlo methods. It is noted that, in aspects of time complexity and accuracy, the

method adopted is better than the Monte Carlo methods.

However, the work of Fodya (2007) does not extend to the third dimensions.

This is so because of the fact the sparse grid methods require more subdivisions

which increase exponentially with the increase in dimensions (Betteridge, 2005).

As such, they break down by being slower in time and convergence complexities.

This problem is called the curse of dimensionality (Fodya, 2007).

The Monte Carlo simulations, which are used in the research work of Betteridge

(2005), preceding the work of Fodya (2007) to solve the problem, are free from

the curse of dimensionality. They have been applied to solve the same problem
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in the third and higher dimensions, but not the lower dimensions. The results of

the work are compared with those the midpoint and trapezoidal rules, which had

been adopted by past researchers.

Monte Carlo methods are computationally realistic (Betteridge, 2005). At the

time of research of Betteridge (2005), quasi-Monte Carlo methods which can be

adapted the deterministic models had been invented.

The option pricing models can be considered to be both deterministic and stochas-

tic (Kuo, 2002). This has been known to many researchers like So (2002). The

research works before So (2002) work had brought the results that had shown

that stochastic volatility models and empirical data demonstrate long term mem-

ory (Zariphopoulou, 2001). Hence, So (2002) work adopts Bayesian estimation via

Monte Carlo Markov Chain sampling to take care of the long-term memory syn-

drome. Better results than those of the other Monte Carlo methods are reported

in this work (So, 2002).

Despite the fact Monte Carlo methods are invariant to the curse of dimensionality,

it has been known that Monte Carlo methods may not well work with empirical

data that has small sample size and demonstrates long-term memory ( Carassus

& Rasonyi, 2002). They are also perform poorly in modeling the problem in lower

dimensions (Fodya, 2007) or higher dimensions. In dimensions lower than 3 they

tend to give computationally unrealistic solutions to partial differential equations

for the option pricing model, which are prices of options. In dimensions higher
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than 3 they tend to be slower (Hozman & Tichy, 2016).

2.3 Hybrid Numerical Methods

This made researchers work hard towards improving the Monte Carlo methods.

One attempt was made by Benth and Vos (2013). They accustomed the multivari-

ate stochastic volatility models to capture energy market (fuel and gas market)

features like price spikes, mean reversion, stochastic volatility, inverse leverage

effect , and dependence of commodities through the use of Fourier Series analy-

sis. This was done deliberately to ensure that the Monte Carlo simulations used

led to efficiently computed results. The work had effectively incorporated er-

godic assumption (Ross, 2009). This was so, because the second order structure,

stationarity, and Gaussian drift assumptions were included simply to achieve con-

vergence in the Monte Carlo methods (Carassus & Rasonyi, 2002). So the results

were promising but not very different from those that could be computed from

the usual Black-Scholes option pricing model (Ross, 2009).

This prompted Benth and Vos (2013) to consider eliminating the Gaussian drift as-

sumption using Fourier Series analysis method to obtain a more realistic stochastic

volatility model ( Benth & Vos, 2013). Thus, a little retardation to convergence of

Monte Carlo method had been introduced to their earlier work for accurate prices.

More realistic solutions were obtained.

However, the solutions depicted positive forward humps in the option pricing

(Benth & Vos, 2013), which made them not very consistent with standard volatil-
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ity jumps in the energy market (Fodya, 2007). Thus, the results were good but

more suited for forwards contracts pricing rather than option pricing (Hull, 2000).

Anticipating this phenomenon, various researchers, like Takkabutr (2013), consider

deriving risk aversion parameter from stochastic volatility with Hestons transfor-

mation under time series model regression, purely using least squares method while

maintaining finite differences in the stochastic volatility model. The consequence

of this is that computational and convergence time have increased with number

of iterations in the finite differences , despite obtaining results that are computa-

tionally more realistic.

Working against this problem, many mathematical finance researchers like Du

et al (2014) propose accelerating Monte Carlo methods for pricing multi-asset op-

tions under the stochastic volatility models developed by Hull and White (Hull,

2000). This improved the efficiency of variance reduction by obtaining more accu-

rate prices of multi-asset options. However, it is noted in the same research work

that the methods perform poorly when the option is out-of-the-money.

Lee (2014) developed a Monte Carlo engine for using a hybrid stochastic-local

volatility model to price exotic options . This method performed poorly in Vanilla

options, which are the most common options available on the options market.

In addition, it is clearly noted in this paper that increasing strike price leads

to increase in relative error. That is, the method is clearly not computation-

ally efficient. In search for the reasons for failure of Monte Carlo methods, some

researchers have always gone back to finite differences. For example, Hozman
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and Tichy (2016) investigate numerical damagingness of boundary conditions in

particular the Dirichlet, Neumann and transparent boundary condition. They

considered introducing to stochastic volatility model the finite difference method

based discontinuous Galerkin criterion (Hozman & Tichy, 2016). This Improved

speed of computation. However, it is also noted in the same research work that

relative error increase with increase in strike price. The method can also break

down at some strike values because of the discontinuous Galerkin criterion (Faou,

2011).

2.4 Need for Operator Splitting Technique

One way to explain the failures in the Monte Carlo and finite difference methods,

is that most of the option pricing models contain at least two terms which are

usually the diffusion ( heat) term and the wave term. For example, in equation

(1.1) the second term is the heat term and the third is the wave term, explaining

why this equation would model cash flow (Langtangen, 2012).

If the partial differential equation contains the heat term and first term only, then

forward Euler finite difference method will always be unstable for all Courant-

Fredrick-Levy numbers that we can choose ( Thalhammer, 2008). This means it

would not converge (Langtangen, 2012). However, the leap-frog method with sec-

ond order accuracy in space and time will be stable for all Courant-Fredrick-Levy

numbers (Langtangen, 2012). Similarly, if the differential equation contained the

wave term only, then the forward Euler implicit finite difference method would

be stable while the leap-frog method will be unstable (Thalhammer, 2008). Since
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most option pricing models contain both the heat and wave term, then choosing

one of these finite difference methods or one Monte Carlo method will not be jus-

tified dynamically (Harwood, 2011), that is in terms of the physical properties of

the terms in the model.

This problem had been noted by researchers in other scientific fields like chemistry

and engineering in which Schrodinger equations (Thalhammer, 2008), which is

very similar to the Black-Scholes linear operator ,are used to solve physical prob-

lems like modeling of optimal lead acid battery compositions (Harwood, 2011).

To solve these problems which usually contain the heat and wave terms (Lucas,

2008), a method of splitting the whole equation into separate and small equations

each having one of the terms based on physical properties of the terms (dynamic

splitting) or based on simplicity of the expressions (algebraic splitting) has been

adopted.

2.5 Classical Operator Splitting Methods

These equations are solved separately using the most appropriate methods for

each equation separately, and then the solutions are recombined to approximate

the solution of the original partial differential equation (Huang et al, 2011). For

example, in this problem one would split the differential equation and use implicit

Euler equation and leap-frog method separately, and then combine the solutions

to estimate the solution of the original problem. The most interesting work in

areas such as this is that of Harwood (2011) in which the method is used in semi-

linear parabolic equations modeling lead acid battery composition, which shows
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clearly that this method is as well dimension adaptive. It is noted in this paper

that any form of operator splitting method outperforms a similar one applied in

full method. That is, explicit Euler scheme are found to be accurate and faster in

split method than in full method.

He managed to obtain a reliable optimal composition of lead acid battery us-

ing this method. These results were consistent with the results of a research work

of Thalhammer (2008) three year earlier that deduced possibility of a high or-

der error bound in operator splitting method for exponential splitting. Mechthild

(2008) demonstrates his results for linear Schrodinger equations. He also numer-

ically demonstrates that the splitting methods retain their convergence in the

Schrodinger equation.

Working under similar motivation, Huang et al (2011) solve Maxwell’s equation

using optimized operator splitting in three dimensions for the first time. They

use finite differences for each approximation in the split sub-problems. They are

also able to increase efficiency through a high order approximation scheme. This

makes them obtain numerical schemes with high order accuracy, and demanding

low computational resources.

In the same year, other researchers , Jia et al (2011), developed a numerical scheme

for solving the Boussinesq and the Navier- Stokes equations of inviscid flow based

on operator splitting method. They used a combination of finite element method

and Euler’s theta method to solve the split sub-problems from the incompressible
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non-stationary thermal convection problems. The method was very efficient. In

addition, a unique solution which was stable at different Reynold numbers was

obtained.

Another independent researcher Faou (2011), in the same year, was able to derive

hybrid numerical schemes based on Monte Carlo recombination of solutions of split

sub-problems upon considering stochastic interpretation of split sub-problems of a

reaction-diffusion problem. He obtained solutions and stability criteria that were

very efficient but not available in research works before his work.

The main set back with operator splitting methods is that many researchers think

that solutions tend to either under estimate or overestimate the solutions of the

problem to be solved (Estep & Ginting, 2008). However, the works of many

researchers like Chertock (2010) have shown that, by selecting a proper recombi-

nation scheme, it is possible to avoid this problem.

One attempt to solve indifference pricing models with stochastic volatility us-

ing the method is made by Ikonen and Toivanen (2004). The main focus of the

work has been the one of solving the American Option pricing problems using

simple models. One observation made in this research is that splitting does not

increase the error of convergence, which was taking care of the problem of increase

in relative error noted by recent researchers studied in this chapter. Ikonen and

Toivanen (2005) compared their results with other full model methods and realized

that the operator split methods were faster. Their results have not been different
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from the common results in other numerical methods which emerged after this

research namely the works of Betteridge (2005) and Fodya (2007) obtained with-

out a splitting method. The works of Ikonen and Toivanen (2005) do not consider

efficient solution method for systems of linear and nonlinear parts equations aris-

ing from the option pricing models. However, the recent works of researchers like

Estep and Ginting (2008) show that selection of efficient methods through sys-

tematic sampling of the split sub-problem, which is purely random and computer

simulation based, leads to better results which are not similar to ordinary ones.

2.6 Improving Operator Splitting Schemes

Similarly, the authors Ikonen and Toivanen (2004) would have used the method

of Li et al (2004) who are able to obtain a fast, robust, and accurate scheme of

measuring crystal growth embedded in a phase-shift equation using operator split-

ting methods. Li et al (2004) split the governing phase-field equation into three

parts. The first is calculated using explicit Euler method, the second by multigrid

method, and the last part which is non-linear using a closed form solution rather

than simply bull-dozing finite difference methods through out.

The main question probably posed by Ikonen and Toivanen (2004) that makes

them fail to use proper method for the linear and non-linear part is that of what

would happen if one used difference scheme which is iterative and then a closed

form that is true on its own without iteration (Hozman & Tichy, 2016). Using

iteration throughout would lead to creation of answers that are very far from the

truth because the iteration in the closed form would lead to manipulation of true
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answers to something different (Langtangen, 2012). The answer to this question

is partly given by the approach of Li et al (2011).

Another approach which the work in this thesis has adopted is that of maintaining

iterative methods in the linear just like Li et al (2011), whilst using Runge-Kutta

methods embedded in Strang’s split-recombination method like Yazici (2010) who

not only shown how to improve the efficiency of the classical operator splitting

methods but also applied this idea to the KdV equation, and then applying the

Charpit method suggested by Fodya (2007). The Runge-Kutta is maintained even

in the Charpit method to allow for iterative method and maintain physical prop-

erties of the problem model just like the methods developed by Delgado (1997)

and Ketcheson (2011).

2.7 Summary

In summary, different methods are devised to solve different problems. For our

problem at hand, it has been shown that up to two dimensions, numerical par-

tial differential equations are more efficient in time and error convergence than

Monte Carlo methods. One can always use the Feynman-Kac formula to con-

vert a stochastic differential equation into a partial differential equation (Fodya,

2007). The work of this research aims at using the operator splitting method to

try to improve the already existing methods that use numerical partial differential

equations.
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Chapter 3

METHODOLOGY

3.1 Introduction

The methodology used in this study is desk review. Literature on option pricing,

stochastic differential equations, partial differential equation , numerical methods,

and operator splitting methods are analyzed. The operator splitting method was

used to solve the partial differential equation from the stochastic volatility model

for option pricing. Convergence criterion for each numerical algorithm assigned

to a sub-problem was established. A proper re-coupling technique is selected by

running permutations which maintain consistency of solutions. Matrix laboratory

1 programming language is used to achieve this.

Strang recombination scheme, under the fourth-order Runge-Kutta method was

applied throughout. These were extended to the non-linear part of the stochastic

volatility equation under Charpits method. The source of data was the financial

data used in the previous research, Chicago Board of Option Exchange (CBOE)

2, and Yahoo Finance (YF) 3. Focus was placed on jet fuel option prices data.

1www.mathsworks.org
2cboe.org
3www.yahoo.com/finance
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The simulations were run together with those available in current research papers

so that appropriate comparison of efficiency of the methods could be made in the

light of empirical data. First, we would like to have a closer look at the common

option pricing models introduced earlier. We focus at the call option.

3.1.1 Black-Scholes Model

The value of a call option on a nondividend paying stock can be dictated by a num-

ber of factors; the current price of the stock S, the exercise price X, the time until

expiration t, the risk-free interest rate r, the volatility of the stock price q = σ,

and the expected rate of return on the stock µ. Let C be the price of the call op-

tion. The functional dependence can then be expressed as: C = C(S,X, t, r, q, µ).

The analysis will reveal that the last variable, µ, plays no role in determining

option value for this case (Langtangen, 2012). The change in stock price dS is

assumed to be given by: dS = µSdt + qSdz. Ito’s Lemma (Hull, 2000) states

that dC = [(∂C/∂t)+(∂C/∂S)µS+(1/2)(∂2C/∂S2)q2S2]dt+(∂C/∂S)qSdz. Now

consider a portfolio containing one written call (whose value is −C) and h shares

of the underlying stock (Ross, 2009). The value V of this portfolio is given as:

V = hS − C. The change in value is then dV
dC

= h dS
dC
− 1⇒ dV = hdS − dC. If h

is equal to h =
∂C

∂S
then dV

dC
=
∂C

∂S
dS
dC
− 1⇒ dV =

∂C

∂S
dS − dC.

This means that the change in the value of the portfolio dV over the interval

dt is: dV =
∂C

∂S
(µSdt+ qSdz)− [(

∂C

S
)µS + (

∂C

∂S

∂C

∂t
) + (1/2)(

∂C

∂S

∂2C

∂S2
)q2S2]dt−

(
∂C

∂S
)qSdz. When terms are combined we find that those involving dz cancel out.

Also the terms involving µ cancel out leaving: dV = [−(
∂C

∂t
)−(1/2)(

∂2C

∂S2
)q2S2]dt.
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Thus V is independent of the random variable dz; that is a risk free portfolio

(Betteridge, 2005). Also the value of dV is independent of the expected rate

of return µ (which is also the expected rate of growth of stock price S). Since

the value of the portfolio is independent of the random variable it should in-

crease in value at the same rate as the risk free interest rate (Ross, 2009); in

other words, dV = rV dt = r[(
∂C

∂S
)S − C]dt. For this to hold for all dt requires

that (Black & Scholes , 1973) (
∂C

∂t
) + (1/2)(

∂2C

∂S2
)q2S2 = −r(∂C

∂S
)S + rC, or

(
∂C

∂t
) + (

∂C

∂S
)rS + (1/2)(

∂2C

∂S2
)q2S2 = rC. This is the Black-Scholes model intro-

duced earlier as equation (1.1). The left hand side is a linear operator.

3.1.2 Binomial model

The binomial model for option pricing is based upon a special case in which the

price of a stock over some period can either go up by u percent or down by d

percent (Ross, 2009). If S is the current price then next period the price will be

either Su = S(1+u) or Sd = S(1+d). If a call option is held on the stock at an ex-

ercise price of E then the payoff on the call is either Cu = max(Su−E, 0) or Cd =

max(Sd−E, 0). Let the risk-free interest be r and assume d < r < u (Hull, 2000).

Now consider a portfolio made up of one written call and h shares of the stock

(Ross, 2009). That is to say, the owner of the portfolio owns h shares of the

stock and then sells (writes) one call with an expiration date of one period. If

the stock price goes up the portfolio has a value of Vu = hS(1 + u)− Cu and if it

goes down Vd = hS(1 + d) − Cd (Fodya, 2007). Suppose h is chosen so that the

portfolio has the same price whether the stock price goes up or goes down (Ross,
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2009). The value of h that achieves this condition is given by hS(1 + u) − Cu =

hS(1 + d)− Cd or h =
Cu − Cd
Su − Sd

=
max(Su − E, 0)−max(Sd − E, 0)

Su − Sd
.

Thus, the ratio h can be determined. In particular, it does not depend upon

the probability of a rise or fall (Hull, 2000). The value of h that make the value of

the portfolio independent of the stock price is called the hedge ratio. A portfolio

that is perfectly hedged is a risk-free portfolio so its value should grow at the

risk-free rate r.

The current value of the hedged portfolio is the value of the stocks less the

liability involved with having written the call (Ross, 2009). If C represents

the value of owning the call then the liability involve with having written the

call is −C. Therefore the value of the portfolio is (hS − C). After one pe-

riod of growing at the risk-free rate its value will be (1 + r)(hS − C), which

is the same as (hS(1 + u) − Cu) = (hS(1 + d) − Cd). Solving for C gives

C = hS−(hS(1+u)−Cu)/(1+r) = hS−hS(1+u)/(1+r)+Cu/(1+r) = hS[1−

(1+u)/(1+r)]+Cu/(1+r) = (hS(r−u)+Cu)/(1+r) = [−hS(u−r)+Cu]/(1+r) If

(r−d)/(u−d) is denoted as p and h is eliminated, then C = [pCu+(1−p)Cd]/(1+r)

Using the same recursive arguments for any n ∈ N time steps, the following

general valuation binomial option pricing formula can be obtained (Ross, 2009).

C0 = e−rT
∑N

i=0(S0 u
N−i di −K)+

(
N
i

)
qN−i(1− q)i

= e−rN∆t
∑N

i=a(S0 u
N−i di −K)

(
N
i

)
qN−i(1− q)i

= S0

∑N
i=a

(
N
i

)
(u q e−r∆t)N−i (d e−r∆t (1− q))i −Ke−rT

∑N
i=a

(
N
i

)
qN−i(1− q)i

= S0

∑N
i=a

(
N
i

)
qN−i (1− q)i −Ke−rT

∑N
i=a

(
N
i

)
qN−i(1− q)i
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= S0Q1−Ke−rTQ2, where q = uqe−r∆t, q = er∆t−d
u−d . Then, u = er∆t−d

q
+ d. There-

fore,

1 − q̄ = 1 − uqe−r∆t = 1 −
(
er∆t − d

)
e−r∆t − dqe−r∆t = de−r∆t − dqe−r∆t =

de−r∆t(1− q) (Ross, 2009).

3.2 Operator Splitting Method

The change in the price of non-risky commodity is directly dependent on the

risk-free interest rate (rt) and the price (Ct) itself. Mathematically, we write

dCt = rtCtdt. An investor is to pay out for a contract at time T and amount

P = P (St, Yt), which depends on stock price St and the price of non-traded assets

Yt which yield volatility σ. This study wishes to solve

ct+
1

2

(
s2σ2css + 2bρsσcsy + b2cyy

)
+

(
a− bρ(µ− r)

σ

)
cy+

γ

2
b2(1−ρ2)(cy)

2−(µ− r)2

2γσ2
= 0

(3.1)

subject to c(T, s, y) = P (s, y), ∀ s ∈ [0, S] and ∀ y ∈ [0, Y ]. Details of this

formulation are found in (Grasselli & Hurd, 2007). Most of the letters in the

Heston’s model (3.1) are defined in the earlier sections of this chapter under the

discussions of Binomial and Black-Scholes model. The letters a and b are scale

variables (Fodya, 2007), ρ is the correlation between s and y. The symbol γ is

the risk averse parameter of the exponential utility function of the form −e−γt.

Consider the optional pricing model under stochastic volatility of the form: (3.1).

We split this into 5 split sub-problems and apply the Strang algorithm as follows

Act = 1
2
s2σ2css, t ∈ [t0, t1], c(t0) = c0

Bct = 1
2
b2σ2cyy, t ∈ [t1, t2], c(t1) = c(t 1

2
)
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Cct = bρsσσ2csy, t ∈ [t2, t3], c(t2) = c(t 3
2
)

Dct =
(
a− bρ(µ−r)

σ

)
cy, t ∈ [t3, t4], c(t3) = c(t 5

2
)

Ect = γ
2
b2(1− ρ2)(cy)

2 − (µ−r)2

2γσ2 , t ∈ [t4, t5], c(t4) = c(t 7
2
)

Aqt = 1
2
s2σ2qss, t ∈ [t 7

2
, t5], q(t 7

2
) = q(t5)

A+B + C +D + E = 1

where q is some weighting function corresponding to the option price c, and letters

{A, B, C, D,E} are random weights representing the contributions of the opera-

tors to the time partial change in option price.

It can be noted that under central differences approximation to partial deriva-

tives the sub-problems can be expresses as A 1
2∆t
〈1, −1〉 = 1

2
s2σ2 1

4∆s2
〈1, −2, 1〉,

B 1
2∆t
〈1, −1〉 = 1

2
b2σ2 1

4∆y2 〈1, −2, 1〉, and C 1
2∆t
〈1, −1〉 = bρsσσ2 1

2∆s∆y
〈1, −1, −1, 1〉.

The finite differences through Runge-Kutta method for the first four sub-problems

and the Charpit’s method in the last sub-problem were applied. This chapter

presents theoretical feasibility of the method which also includes consistency, sta-

bility and error analysis.

3.3 Consistency Analysis

Definition 3.3.1. An operator splitting method is consistent if it satisfies the fol-

lowing conditions: limh→0 sup[0,T−h]

‖(V (h)− Φ(h))(c)‖
h

= 0 and
‖(V (h)− Φ(h))(c)‖

h
=

O(hp), where O(h) is the truncation error under Taylor series approximation op-

erated by h, p is a real number, V is the exact solution operator and Φ is the

approximate solution operator (Carassus & Rasonyi, 2002).

Definition 3.3.2. Definition of Fourier transform A Fourier transform of
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a function f is defined as f̂(λ) =
∫∞
∞ f(t) exp(−iλt)dt, where i =

√
−1, λ ∈ R|{0}

(Langtangen, 2012).

The operatorsA 1
2∆t
〈1, −1〉 = 1

2
s2σ2 1

4∆s2
〈1, −2, 1〉, B 1

2∆t
〈1, −1〉 = 1

2
b2σ2 1

4∆y2 〈1, −2, 1〉 =(
1
2
b2σ2

4∆y2

)
(cni+1 − 2cni + cni−1), and C 1

2∆t
〈1, −1〉 = bρsσσ2 1

2∆s∆y
〈1, −1, −1, 1〉 are

bounded. We verify the boundedness of the operators. Proofs of most of the

propositions, and lemmas so quoted and applied are not replicated in this section.

If we let
1

4∆y2
〈1,−2, 1〉 = ∂+

y ∂
−
y c

j
i , where ∂−y c

j
i backward difference approxima-

tion to partial derivative and ∂+
y c

j
i is foward difference approximation to partial

derivative, then the explicit Euler scheme applied to the first, the second, and the

sixth split sub-problems can be defined as Aw∂
+
t c

j
i = Cw∂

+
y ∂
−
y c

j
i together with the

boundary in (3.1) conditions and cTS = cTY = c0
0 (Fodya, 2007) while the implicit

euler scheme is defined as Aw∂
−
t c

j+1
i = Cw∂

+
y ∂
−
y c

j+1
i under the same boundary

conditions (Carassus & Rasonyi, 2002). In this case Aw ∈ {A,B} ⊂ R and

Cw ∈
{

1
2
s2σ, 1

2
b2σ2

}
⊂ R. We need Aw to be a state of a stochastic process, and

hence, it is determined randomly (Ross, 2009).

Suppose cji is a solution of the first, the second, and sixth split sub-problems,

then using the argument considered by Dimarco and Pareschi (2011), and main-

taining the boundary conditions considered in problem (3.1) the explicit Euler

method will satisfy sup
∀i
‖cTi ‖ ≤ sup

∀i
‖c0
i ‖ provided the Courant-Fredrick-Levy num-

ber
(

Cw∆t
4Aw∆y2

)
is within the interval [0, 1]. For the implicit Euler scheme, the same

condition is satisfied but for all Courant-Fredrick-Levy numbers (Carassus & Ra-

sonyi, 2002). In this paper as noted in the next section the Courant-Fredrick-Levy

number cannot be zero, otherwise the physical meaning in equation (3.1) is altered
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(Chockalingam & Muthuraman , 2011). Thus the operators in the first and the

second split sub-problems are bounded (Yazici, 2010).

Similarly, the difference equation endowed in the third split sub-problem can be

expressed as Aw∂
−
t c

j+1
i = Cw∂

+
y ∂
−
s c

j+1
i , where Aw = C ∈ R and Cw = bρsσ2. If cji

satisfies this sub-problem, we have sup
∀i
‖cTi ‖ ≤ sup

∀i
‖c0
i ‖ for all non zero Courant-

Fredrick-Levy numbers

(
Cw∆t

4Aw∆s∆y

)
with respect to analysis in (Faou, 2011).

Thus the operator in the third split sub-problem is bounded.

The fourth split sub-problem clearly satisfies the same conditions because |Aw∂+
y cj−

Cwc
′(yj)| ≤ 0.5∆y2|(Aw −Cw)cj|C3([0,Y ]×[0,T ]). This analysis is done by using Tay-

lor series and is similar to the one applied by ( Fowler & Winstanley, 2012).

If we allow c = c(t, s, y) = a1t+a2y+a3s+a4 = a1t+a2y+a(s), {ai : i = 1, 2, 3, 4} ⊂

R to be the solution of the non-linear sub-problem, then the solution has the

form c =
(
Dwa

2
2 + (µ−r)2

2γσ2 /E
)
t + a2y + a(s), where Dw =

γ
2
b2(1− ρ2)

E
, ct = a1,

cy = a2. This is an exact solution under Charpit method (Delgado, 1997). To

approximate this solution we adopt the following iteration: k2 =
(u− r)2

2σ2(yj)
, k1 =

∆t
E∆y

(
cn+1
j − (u− r)2

2σ2(yj)
sj

)
, k3 = cn+1

j−1−
(
yj + sj

√
sj
k2

)
+k1, c

n+1
j+1 = yj+sj.

√
sj
k2

+k3

, which is similar to the method adopted by Geng (1993) and Takkabutr (2013).

From the analysis in the previous paragraph, the coefficients (a1 and a2) are

bounded.

It follows from this analysis that the split sub-problems used in this study agree
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up to O(∆t3) +O(∆y3). In other words, if we let V123456 and Φ123456 be exact and

approximate solutions of the method used in this study for the six sub-problems,

respectively, then from Taylor series and combination of results similar to the

one adopted by Lucas (2008) and Harwood (2011), we have ‖V123456 − Φ123456‖ =

O(∆t3; ∆y3).

3.4 Error Analysis and Accuracy

This subsection mainly explains how we arrive at this result in the last subsection.

We consider the time part only.

To investigate the splitting techniques accuracy, the solution is solved over many

small steps sizes allowing for t5 = ∆t. The accuracy of the algorithm used in

splitting outlined above is is determined by the order under Taylor expansion (

Rosencrans, 1972). One way determination is considered here because it has been

shown that permutation of the same recombination system does not affect order

of truncation error (Harwood, 2011).

Since we adopt the Strang operator splitting technique, the first and the sec-

ond split sub-problem can be expressed as (A+B)ct = (β1L1 + β2L2)c, where L1

and L2 are independent of s andx. The exact solution after time δt = t5 to this is

c = e(L1+L2)δtu0 ≈ e
1
2
L1δteL2δte

1
2
L1δtu0 (Lucas, 2008). Since L1 operates the partial

derivative in the direction of x, the operator eL1δt just multiplies by eL2(x)δt. Since

L1 = FL̂1F
−1 is orthogonally diagonalizable by a Fourier transform F (Jia et al.,

2011), assuming the boundary conditions in the problem (3.1) , eL1δt = FeL̂δtF−1,
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where eL̂δt is the operator that multiplies each Fourier mode by e−k
2δt.

Using similar definitions of exact solution under Strang splitting and the ap-

proaches followed by Harwood (2011), Jia et al (2011) and Lucas (2008), we con-

sider the whole problem (3.1) as follows: |cexact(∆t)−Φ(∆t)| = |L1 sin(π∆t)eL1π2∆t−

e∆tL1cn+L3 sin(π∆t)eL3π2∆t−e∆tL3cn+3/2+L6 sin(π∆t)eL6π2∆t−e∆tL6cn+1+eL4∆tcn+5/2−

re
∆t
2
L4cn+5/2 +L2 sin(2π∆t)e∆t−reL2∆tcn+3/2 +rL−1

5 ∆t−erL
−1
5 ∆t| = |(I+∆tL1c

n+

∆tL2c
n+· · · )(π∆t−π2∆t2/2+· · · )−· · · | ∝ |∆t

2

2

(∑ ∂icn

∂ti
Lic

n −
∑

Lic
n + · · ·

)
+

O(∆t3)| = O(∆t2)

It follows that the algorithm has truncation error of order O(∆t2) based on agree-

ment of order of agreement of the sub-problems (Carassus & Rasonyi, 2002).

3.5 Stability Analysis

It is imperative to determine the Courant-Friedrichs-Levy condition for the stabil-

ity of the explicit solution of the PDE using the Von Neumann stability analysis .

A very versatile tool for analysing stability is the Fourier method developed by Von

Neumann. Now the Strang algorithm can be represented as
∂

∂t
C∗ = L∗v∗, C∗ =

[(C∗)ij]1×6, L∗ = [(L∗)ij]6×6, v∗ = [(v∗)ij]1×6, where (C∗)11 = Ac, (C∗)12 =

Bc, (C∗)13 = Cc, (C∗)14 = Dc, (C∗)15 = Ec, (C∗)16 = Aq, (L∗)ij, i 6=j =

0, (L∗)11 = 1
2
s2σ2L1, (L∗)22 = 1

2
b2σ2L2, (L∗)33 = bρsσσ2L3, (L∗)44 =

(
a− bρ(µ−r)

σ

)
L4,

(L∗)55 = L5, and (L∗)66 = 1
2
s2σ2L6. The fifth split sub-problem has non-linear op-

erator v5 = (cy)
2 and hence L5 is the algebraic operator on on v5, L1 =

∂2

∂s2
= L6,

L2 =
∂2

∂s∂y
, L3 =

∂2

∂y2
, and L4 =

∂

∂s
.
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3.5.1 Fifth Sub-problem

The stability of the fifth problem can be approximated as by letting c(t, s, y) =

∆yc(0, 0, y)y+∆sc(0, s, 0)s, because Charpit’s method is used under Runge-Kutta

method in the Strang’s splitting method adopted. Hence, applying the Fourier

transformation gives
ĉn+1eiλ+λ − ĉn+1eiλ−λ

∆t
= r

ĉne2iλ

2
− r2e

iλ, from which ρ(λ) =

1

1 + irr2(e−3λ − eλ)2 sin(λ)
, which also implies that the system is stable when r 6=

0. In this case r = ∆t
E∆y

and r2 = ∆t
E∆y

(u− r)2

2σ2(yj)
sj. The modulus of the product of

rho’s is clearly within unity, which implies that the whole recombination scheme

is stable (Harwood, 2011) under the condition that the CFL numbers for each

split sub-problem is not zero, which also implies that the parameters should not

be zero.

3.5.2 Fourth sub-problem

Clearly, this is heat equation or one way wave equation. We can express this

as ct = kcx, where k =
σa− bρ(µ− r)

Dσ
. Clearly, eix = cos(x) − i sin(x) and

e−ix = cos(x)+ i sin(x), so that 2i sin(x) = e−ix−eix, i =
√

(−1). We are going to

use this idea to establish the stability of the methods so used for each sub-problem.

Consider the scheme (Langtangen, 2012) cj+1
i =


cji − k ∆t

∆x

(
cji − c

j
i−1

)
, k > 0

cji − k ∆t
∆x

(
cji+1 − c

j
i

)
, k < 0

Since k 6= 0, then we don’t want the parameters to be zero for the sake of fair

comparison with classical methods (Grasselli & Hurd, 2007). In order to apply the

Von Neumann stability analysis, we consider ρ(λ) = ĉn+1(λ)
ĉn(λ)

, where ĉni (λ) = eiλxi ,
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and obtain the following results, upon substituting in the scheme

ĉn+1(λ) =


(

1− k ∆t

∆x

(
1− e−iλ∆x

))
ĉn , k > 0, j = n(

1− k ∆t

∆x

(
−1 + eiλ∆x

))
ĉn , k < 0, j = n

From these results, we realise that, for k > 0, ρ(λ) = ĉn+1(λ)
ĉn(λ)

= 1−k ∆t

∆x

(
1− e−iλ∆x

)
. It is clear, that the system is stable given that 0 < k ≤ ∆x

∆t
(Yazici, 2010). We

demonstrate this, by finding the condition that can be satisfied for |ρ(λ)| ≤ 1,

which is the condition for stability (Ketcheson, 2011). Using the identities eix =

cos(x) − i sin(x) and e−ix = cos(x) + i sin(x), so that 2i sin(x) = e−ix − eix, i =

√
(−1), we can rewrite this equation as ρ(λ) = ĉn+1(λ)

ĉn(λ)
= (1 − α + α cos(β)) −

iα sin(β), α = k
∆t

∆x
, β = −λ∆x. From this, we realise that |ρ(λ)|2 = (1− α)2 +

2(1 − α)α cos(β) + α2. Suppose 0 ≤ α ≤ 1, then |ρ(λ)|2 = (1 − α)2 + 2(1 −

α)α cos(β) + α2 ≤ (1 − α)2 + 2(1 − α)α + α2 = 1. However, 0 ≤ α ≤ 1 means

0 < k ≤ ∆x

∆t
. So in programming, we made sure that whenever this sub-problem

was being solved under this scheme, this condition was satisfied. When k < 0, we

realise that ρ(λ) = (1 + α)2 − 2α(1 + α) cos(β) + α2. Suppose −1 ≤ α ≤ 0, then

ρ(λ) = (1+α)2−2α(1+α) cos(β)+α2 ≤ (1+α)2−2α(1+α)+α2 = 1. Hence, we

choose −∆x

∆t
≤ k < 0 in the programming to avoid instability problems. That is

D was estimated through
σa− bρ(µ− r)

rand

((
0,

∆x

∆t

]
∪
[
−∆x

∆t
, 0

))
σ

, where the coefficient

of volatility in the denominator means random number in either of the sets in the

operation. The choice depends on the orientation of k. The details are given in

the program in the Appendix B.
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3.5.3 First and Second Sub-problems

We consider the scheme below that represent both sub-problems

Aw
cn+1
j − cnj

∆t
= Cw

cnj+1 − 2cnj + cnj−1

(∆x)2
(3.2)

because the first, the sixth, and the second split sub-problems are similar. In

this case Aw ∈ {A,B} ⊂ R and Cw ∈
{

1
2
s2σ, 1

2
b2σ2

}
⊂ R. If we apply simi-

lar analysis applied in the Subsection 3.5.2, we obtain the Courant-Fredrick-Levy

condition 0 < ∆t ≤ (∆x)2Aw

2Cw
(Langtangen, 2012). This limits our choice of the ran-

dom weights Aw for splitting method. We adopt the following scheme to increase

the range of choice of the random weights (Ketcheson, 2011) and to improve the

scheme represented by Equation (3.2)

cn+1
j − cnj =

∆tCw
Aw(∆x)2

(
cn+1
j+1 + cnj+1

2
− 2

cn+1
j + cnj

2
+
cn+1
j−1 + cnj−1

2

)
.

Thus, we move the partial derivatives to time n + 1
2

(Ketcheson, 2011) using av-

erages. This matches with the splitting methods suggested above (Yazici, 2010).

In order to apply the Von Neumann analysis in the rewritten form of the scheme,

we let ĉnj = ξneiλj∆x, where ξ represents the time dependence of the solution,

i =
√

(−1) and the exponential represents the spatial dependence of the so-

lution. In the exponential j∆x represents the position along the grid, and λ

represents wave number. This is so because the split sub-problems are simply

Diffusion Equations. Substituting this form, ĉnj = ξneiλj∆x, into the improved

scheme we obtain ξ − 1 = ∆tCw

Aw(∆x)2

(
ξeiλ∆x + eiλ∆x − 2ξ − 2 + ξe−iλ∆x + e−iλ∆x

)
.
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Applying the identities eix = cos(x) − i sin(x) and e−ix = cos(x) + i sin(x), we

obtain ξ = 1 − ∆tCw

Aw(∆x)2 (ξ + 1) [1 − cos(λ∆x)]. Expressing ξ explicitly, we obtain

ξ =
1− ∆tCw

Aw(∆x)2
[1−cos(λ∆x)]

1+ ∆tCw
Aw(∆x)2

[1−cos(λ∆x)]
. Clearly, the numerator is smaller than the denominator.

Therefore, |ξ| < 1, which satisfies the stability criterion when Cw 6= 0. In pro-

gramming Aw = 2∆tCw

(∆x)2 was sufficient with respect to the above analysis. Hence,

the methods in the first, second and the sixth split sub-problem are conditionally

stable.

3.5.4 Third Sub-problem

We adopt the following numerical scheme for the third sub-problem (Fodya, 2007)

C
cn+1
i,j −c

n
i,j

∆t
= 2bρsσ

cn+1
i+1,j+1−c

n+1
i+1,j−1−c

n+1
i−1,j+1+cn+1

i−1,j−1

4∆x∆t
. Letting k = 2bρsσ∆t

4C∆x∆t
and substi-

tuting, ĉnj = ξneiλj∆x, into the scheme we obtain ξ−1 = 2kξ (eiα − e−iα) , where α =

λ∆x∆t. Applying the identities eix = cos(x)−i sin(x) and e−ix = cos(x)+i sin(x),

we obtain ξ − 1 = −4ikξ sin(α). Making ξ subject of the formula we obtain

ξ = 1
1+4ik sin(α)

= 1−4ik sin(α)

1+16k2 sin2(α)
. From this we have |ξ|2 =

1

1 + 16k2 sin2(α)
≤ 1

Thus, the scheme is unconditionally stable.

3.6 Runge-Kutta (Numerical Method)

This section discusses Runge-Kutta method used in the operator splitting tech-

nique in this study. The fourth order Runge-Kutta method so adopted follows

the following algorithm: c0 = α, k1 = hf(yi, ci), k2 = hf(yi + h
2
, ci + 1

2
k1), k3 =

hf(yi + h
2
, ci +

1

2
k2), k4 = hf(yi+1, ci + 1

2
k3), where h =

Y

N
=

S

N
=

T

N
is the

step size, and f(y, c) = ∂orientationxi
c(Tj, y, s). Some researchers like Geng (1993),

Yazic (2010), and Fowler & Winstanley (2012) have used this technique to solve
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the Schrodinger or Boltzmann equation in fluid mechanics.

It has been shown by a good number of researchers (Fowler & Winstanley, 2012)

that this method has a truncation error of order O(h4). As seen here, the def-

inition of f(y, c) is a partial derivative in difference formula form. This is done

because we are approximating from a partial derivative not an ordinary one, and

because we want to maintain the physical meaning of the differential equation, in

order to obtain more realistic option prices. This is similar to the algorithm used

by Yazic (2010) to solve the KDv (Korteweg–de Vries) equation in his paper.

3.7 Matrix Laboratory Programming

The Matrix Laboratory commands used in this programming made minimum use

sparse matrices and hard coded solvers. It used simple commands to construct

finite difference representation and the Runge-Kutta Method. Direction of eval-

uation within a matrix are changed withing the matrix to represent change in

the direction of partial differentiation (Yazici, 2010). The Runge-Kutta scheme

samples from the values of the partial derivatives. Special Matrix Laboratory

technique is used to sample values along a line with particular value(s) of σ and y

in order to compare the results with empirical data from the sources outlined in

the first paragraph of this chapter. Details of the programming are given in the

appendix B.
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Chapter 4

RESULTS AND DISCUSSIONS

The numerical analysis is done on the scheme in the last chapter in the inter-

val [0, 1] for both stock price price and volatility random variable states. For

comparison purposes the values in (Fodya, 2007) and (Betteridge, 2005) which

are a = 0.5; b = 0.3; ρ = 0.5; γ = 1; µ = 0.04; r = 0.02; Y = 1; K = 0.8;

σ(y) = 0.25 +
1

2π
tan−1 (λ(y − 0.5)) are maintained. This is done to maintain

consistency, stability, and accuracy verified in chapter 3.

Figure 4.1: Standard Volatility Function

The empirical results on the volatility σ(y) = 0.25 +
1

2π
tan−1 (λ(y − 0.5)) due

to the changing jump parameter λ when the payoff is (s − K)+ are similar to

those evaluated by other researchers (Fodya, 2007; Grasseli & Hurd, 2007). The

values of lambda are λ = 2, 20, or 200. The results in figure 4.1 show that if the

jump increases, the volatility jumps under the same payoff, and the curve steepens
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in the middle. Similarly, the curve flatten in the middle as the jump parameter

lowers and the volatility values lower. This is one way to check the behavior of the

option prices given by solution of stochastic volatility in terms of computational

efficiency of method of approximating the solution.

4.1 Exploratory Numerical for Consistency

Figure 4.2: Option Prices in one Dimension Through OSM

Figure 4.3: Option Prices in Two Dimensions Through OSM when
λ = 2

We first run the operator splitting method in one dimension. We do this by

considering the partial derivatives in one direction only until each sub-problem

is solved each time , which is very possible with operator splitting method as

discussed in the previous chapter. The 1-D solutions are compared with those
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in (Fodya, 2007) and (Grasselli & Hurd, 2007) only in terms of consistence with

reference to the results in figure 4.1. The figure 4.2, shows that the expected option

prices estimated through operator splitting method using the same model are in

line with the expectation given by the volatility in figure 4.1. There is steady rise

just like in prices of option prices.

Figure 4.4: Option Prices in 1-D Through OSM when λ = 20

Figure 4.5: Option Prices in 2-D Through OSM when λ = 20

The result of finite difference method without splitting when λ = 2 from research

done by Fodya (2007) are represented in figure A.1. The mesh plot (Figure 4.3)

curves inwards which suggests existence of inconsistency of the solution of full

method solution with the expectation set by the volatility in figure 4.1. This null

hypothesis has been rejected in this section with strong evidence from the data

at hand. Under the same condition that the jump parameter is freed to λ = 2,
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the solution (that is option price curve under stochastic volatility) via operator

splitting technique in one dimension (Figure 4.2) flattens in the middle however

permutations are changed in the method of solution (Appendix B). This firstly

matches with the expectations set by Ikonen & Taivanen (2005) of truncation error

order being invariant under different permutations. This also verifies the efficiency

of the type of operator method adopted in this paper. The flattening (figure 4.2)

suggests consistency in the operator method with reference to those in figure 4.1.

Since the results in (Fodya, 2007) represented in Figure A.1 are derived under

the case of 2-D, it is imperative to evaluate the solution via operator splitting

technique in 2-D for a fair comparison. This has been implemented by ensuring

evaluation of partial derivatives in both axes at the same time (Appendix B) and

represented by the results in the Figure 4.3. The shape is more flattened and more

similar to 4.1. This suggests that there is no change in consistency under operator

splitting method even if dimension changes.

Thus a more rigorous analysis of consistence of the operator splitting technique is

needed. A sample of optional prices is collected when the underlying asset value is

0.5 maintaining the change in the volatility random variable in the same interval

[0, 1]. A trend in the flow of the prices is statistically established via time series

analysis techniques and the results in Figures A.8 and 4.6 are obtained.

The graph in Figure 4.6 suggests that there is an effect of standard volatility

function on the price estimation given by operator splitting method. Since the
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step sizes in y are constant, it follows that the values of y cannot affect changes in

price or volatility even if they are given as integers. A plot of y values represented

as integers confirms this notion (Figure A.2). This justifies the use of the cross-

correlation function (CCF) of two random processes c = Yt and σ(y) = Xt, which

is the product moment correlation as a function of lag k , between the series’ and

it is defined as: ρxy =
γxy(s, t)√

γx(s, s)γy(t, t)
, which relates the kth cross-correlation

coefficient, ρxy(s, t) , with the sample cross-covariance function ,γxy(s, t) , and the

sample variances γx(s, s)
′
s (Ross, 2009) to investigate the existence of effect of

volatility when operator splitting method is applied to find the option prices in

the model when the jump parameter is freed to 200.

Figure 4.6: The effect of Volatility on Option Prices

The results in Figure A.8 do not need further analysis to investigate whether the

correlations at each lag is zero or not, since at least 95% of the correlations are

at least 0.5. This shows clearly now that the operator splitting method used in

this research does not mask the impact of volatility on the optional price. In fact,
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Figure 4.7: Option Prices in one Dimension Through OSM

Figure 4.8: Option Prices in Two Dimensions Through OSM when
λ = 200

there is a positive influence of volatility on price as expected (Grasselli & Hurd,

2007). These results are better than those under full method (Figure A.1).

We Sample from the data values in Figure A.3, which is obtained from (Fodya,

2007) and (Grasselli & Hurd, 2007). Performing similar analysis, the results in

Figure A.5 are obtained. Cross-correlation function (Figure A.9) shows similar

results that there is consistency in full method. Thus, the null assumption of

inconsistency of the full method is rejected. At least 78% of correlations are at

least 0.5. The only difference is that 78% is less than 95% and that at lag = 0,

the correlation for the split method in this study is very high.
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4.2 Computation Time Comparison

Table 4.1: Average Computational Times in Seconds

Number of Iterations OSM Run FDM Run
65 1.529 4044.3
81 1.57 5039.82
84 1.579 5226.48
92 1.604 5724.24

1000 19.055 62220

The computation time in seconds were collected from the operator splitting method

and also sampled from full method in Fodya’s run at different values of N (that is

number of iterations) (Figure A.10). From this figure, it is very obvious that the

running times are different and hence, no need to statistically verify the difference

between the values. It can be seen (Figure A.10) that whenever N ∈ [10, 300],

computation time for the operator splitting method in this study is between 0.11

seconds and 31 seconds while in full method it is between 0.8 seconds and 7000 sec-

onds. Similarly when N = 1000, computation time in operator splitting method is

972 seconds, but 52000 seconds in the full method (table 4.1). Thus computation

times in operator splitting method are obviously lower than those in full method.

It follows that a different way of comparing the data should be investigated. The

advantage of full method is that the computational time is linear and a rerun of

modeling in this study showed that the linear model is the most plausible model

for their research (Fodya, 2007).

In figure 4.9, b = (N2)2, t2 = Computation Time in other research works (Full Method),

N2 = N . These results suggest that a linear or a quadratic model is suitable. In

fact, other types of models failed completely and we do not include them here.
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Figure 4.9: Modeling Computation Times in Full Method

However, the analysis of variance tables (Figures A.11 and A.12) show that both

quadratic and linear models are suitable for modelling the relationship between

computational times and N, since all the p-values are less than 0.05 for the ob-

served F-statistic. However, a closer look at the p-values for the coefficients shows

that p-values in quadratic model are bigger, F-statistic is smaller and adjusted R2

is smaller. In particular, the p-value for b = (N2)2 is 0.811 > 0.05, which means

the leading coefficient of the assumed quadratic model (-0.005) is statistically not

different from 0. This violates the definition of quadratic function. Therefore, the

data at hand provides strong evidence that the linear model is suitable.

As for computational times in the operator splitting method used in this study

(c=N2), it is very obvious (Figure A.13) that the model relating this variable to

the number of iterations is purely quadratic (R2 = 99.55%) and not linear. To

achieve a fair comparison, the models are compared on similar values. Thus times

of computation for operator splitting method used in this study are lower than
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Figure 4.10: Computation Times Comparison

those in full method, but they are quadratic (Figure 4.10 ).

4.3 Predicting Actual Prices in the Market

A comparison is done here to find the closeness of price estimates in this paper

to those actually demanded by buyers with reference to results given by Fodya

(2007), and Grasseli & Hurd (2007). To do this data on observed market prices

of Jet Fuel and options was collected from the Chicago Board of Options Ex-

change(CBOE) and Yahoo Finance (YF). The data spanned from the year 2000

to 2016. For some years it was collected in equally spaced time intervals. Data for

the year 2004 was missing from the available sample. The data from Joshi (2008)

book was used to verify accuracy. Focus was put on vanilla call options rather

than put options.
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The first exploration was made by plotting the observed prices of jet fuel op-

tions per litre against the observed stock prices per litre. The results showed

mixed random patterns( Figure 4.11). A decision was made to separate the data

Figure 4.11: Jet Fuel Option Prices Observed in the Markets

values and study them in separate years. Non-random patterns were observed in

this scenario (Figure A.4).

This is in line with the type of programming that was used to solve the prob-

lem (Appendix B) in which time was made constant to study the option prices in

relationship with volatility random variable and the underlying prices. However,

it has been noted that the prices in this relationship is periodic with period of

one-year. The patterns are similar and repeated in each year. Focus was then put

on the years 2011, 2012, 2015 and 2016, because there were a lot of data points in

these years (Figure A.4).

These market values were compared with those computed via operator operator
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Figure 4.12: Investigating the Efficiency of OSM

Table 4.2: Numerical Consistency Check of Solution Via OSM

Year Sample size=n Number of Iterations=N Relative error
2011 8 65 0.0145
2012 10 81 0.001101
2014 10 84 0.000923
2016 65 92 0.000457

splitting technique by measuring the degree of closeness on the predicted values

got from the stochastic volatility model.

Analysis of Variance, Kruskal-Wallis test or T-test could not be used because

the data sets whether predicted or observed were found not to be normally dis-

tributed (Figures A.14 and A.15) as predicted in the book of Ross (Ross, 2009), as

well as they can not be assumed to be independent since they had been sampled at

the same values of volatility for a fair comparison. For example, the model (Figure

A.7) was used to predict market jet fuel option prices in the year 2012 (Figure

A.6). It was noted that the value of N = 81 was needed to get the estimation
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of the observed price with a very low error of 0.001 (Figure 4.12) which is better

than 0.1 when full method is used. That is to estimate these 10 points in Figure

A.6 with this high degree of accuracy 81 points were taken in the model via op-

erator splitting technique (Figure A.7). A number lower or higher than this lead

to under or over estimation expanding the errors. Similar results were obtained

in the trying to apply this model to predict option prices for the other years and

the results are summarized (Table 4.2 ). Thus, all these computations to predict

optional prices took less than 0.966 second to run completely, because N < 100 (

Table 4.2 and Figure 4.10)
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Chapter 5

CONCLUSION AND FURTHER WORK

5.1 Conclusion

5.1.1 Introduction

This paper has considered one way of improving the works of Fodya (2007) and

Betteridge (2005) by using operator splitting method in order to price options us-

ing the stochastic differential equations. We considered the problem of solving the

stochastic volatility model instead of Black-Scholes and Binomial models, because

they are constructed under the risk neutrality assumption and hence, they do not

give computationally realistic prices. The the stochastic volatility model used by

Fodya (2007) and Betteridge (2005) has stochastic volatility assumption included

through utility function.

There is no closed solution to the stochastic volatility model of option pricing.

Most researchers use finite difference and Monte Carlo Methods to find the ap-

proximate solutions of the model. It has been noted that the early users of finite

difference method quoted in this thesis used the Feynman-Kac formula to convert

a stochastic differential equation into a partial differential equation. This is suf-
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ficient to solve the stochastic volatility equation up to two dimensions. In higher

dimensions the method faces the curse of dimensionality discussed in introductory

chapters of this paper. The immediate answer to the problem has been to use the

Monte-Carlo method for higher dimensions. It has been noted that Monte Carlo

methods face convergence problems in that they take long time to converge. This

problem has usually been solved by either developing a new form of Monte Carlo

method or by modifying assumptions in the stochastic volatility model and then

use Monte Carlo or finite difference methods. This has brought in many problems

like increasing relative error when strike price of option increases.

5.1.2 Achieving First and Second Objective

In this study, an operator splitting technique with five distinct split sub-problems

is adopted. The sixth sub-problem is a weighted form of one of the sub-problems.

This is a principle in Strang’s recombination scheme. The first four sub-problems

do not have closed forms. They are solved using Runge-Kutta method. The partial

derivatives are expressed in finite difference form and the Runge-Kutta method

is applied on these forms to estimate solutions to the split sub-problems. This

has been shown to be an improvement to the finite difference method. The last

sub-problem is non-linear and has a closed form under the Charpit’s method.

We considered doing this in order to use the most appropriate technique in each

sub-problems and hence make the operator splitting technique efficient. This al-

lowed us to construct computationally Runge-Kutta allows for the whole program

to be cheaper in terms of computer processing unit run time (Langtangen, 2012).
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This achieves the second objective and partly the last objective of this study, be-

cause it allowed for use of simple Mathematics Laboratory commands instead of

hard coded solvers for differential equations.

Theoretically, it has been shown that the operator splitting method used in this pa-

per is consistent, if the all the parametric coefficients of the stochastic differential

equation are not zero. The schemes are also found to be stable, if the Courant-

Fredrick-Levy numbers computed through Von-Neuman stability analysis should

not be zero. To achieve empirical stability and consistent we used all the values

given in the literature (Fodya, 2007; Betteridge, 2005; Grasselli & Hurd, 2007).

5.1.3 Achieving the Third Objective

Thus, the operator splitting technique used in this research has been found to be

both theoretically and experimentally stable, consistent and convergent. This is

so because of the use of the Strang’s method that has second order accuracy of

truncation error. The Runge-Kutta method also allowed for the finite differences

not to distort the physical meaning of the explicitly expressed partial derivatives in

the stochastic volatility model. This explains why the shapes remained unchanged

under different permutations. This means the operator splitting method used in

this study gives computationally more realistic than the finite difference method

used without splitting.

In addition, we have found that the truncation error is not increasing because

of splitting, and that the method is fast. For example, for 1000 iterations, the
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operator splitting method runs in a time that is less than 16 minutes, but the

finite difference method runs in a time that is more than 14 hours. This happens

when there is a large jump in volatility. In this case we see that operator split-

ting technique used in this study is 52 times cheaper in demand for time resources.

It has been seen that for smaller number iterations the operator splitting tech-

nique computation times are comparable with finite difference method, but for

larger number iterations the computation times are still lower in operator splitting

technique, but expand linearly in finite difference method. The times in operator

splitting rise very slowly. Apart from very small number of iterations, there clearly

exists a number of iterations for which the operator splitting technique used in

this thesis and the finite difference method have the same high computation time.

However, the study has clearly shown that such a number is infinitely large for

practical purposes. It has been shown in this study that efficiency can be easily

improved, by simply choosing the most appropriate method for a sub-problem.

It has also been seen that the operator does not mask the effect of volatility

much better than the finite difference method. This is because of the fact that

the Strang’s method a midst Runge-Kutta method and also the fact that very

appropriate finite different schemes were selected for each sub-problem. If follows

that in the light of the standard volatility function the operator splitting tech-

nique provides numerical solution that are very close to the unknown solution of

the stochastic volatility model. That is the operator splitting method helps one

estimate realistic option prices using the realistic models. This fact has also been

55



evidenced from the fact that the estimates of prices obtained in this study are

very close to those accepted on the market collected by Chicago Board of Option

Exchange. The relative errors are also not increasing with increase in number of

iterations or strike price. Thus, the method is computationally realistic.

5.1.4 Summary

Thus, we intended to explore the efficiency of operator splitting technique. To

do this, we solved the stochastic volatility model (3.1) using operator splitting

technique. We have achieved this specific objective by applying finite difference

representation of partial derivatives, Charpit’s method, Runge-Kutta method, and

Strang’s recombination Scheme to the five split sub-problems from the model. We

then constructed an efficient Matrix Laboratory program to run the numerical

method of the scheme. To achieve the third objective, we compared the results

are compared with those of Fodya (2007), Betteridge (2005), and Grasselli & Hurd

(2007). We have seen that the operator splitting method is more computationally

realistic and cheaper in terms of demand for time resources. In other words, the

method is more efficient.

5.2 Further Work

This paper has solved the stochastic volatility models up to two dimensions. We

have shown that the method is efficient in that it gives realistic results within

polynomial time complexities. Another researcher might think of tackling a higher

dimension problem. In addition, we considered using Runge-Kutta together with

very appropriate finite difference methods. One could think of excluding the
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Runge-Kutta method, and then use recent hybrid Monte Carlo methods (Faou,

2011) for each sub-problem in three dimensions. Since we are studying stochastic

volatility model for option pricing by splitting the operators randomly, this study

clearly shows that presentation of stochastic volatility model for option prices as a

set of algorithms rather that one unique formula could be an interesting problem

that could be subject of another study. One can also analyse the operator splitting

much deeper in stochastic processes.
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Appendix A

Data Used in the Study

Figure A.1: Full Method Option Prices in 2-D λ = 2

Figure A.2: The effect of volatility on OSM Solution
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Figure A.3: Full Method Optional Prices in 2-D λ = 200

Figure A.4: Jet Fuel Option Prices
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Figure A.5: Impact of Volatility on FDM Option Prices

Figure A.6: 2012 Jet Fuel Optional Prices
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Figure A.7: Predicting 2012 Jet Fuel Optional Prices in 2-D λ = 200

Figure A.8: Verifying Volatility Impact on OSM Optional Prices

67



Figure A.9: Correlation between FDM Option Prices and Volatility

Figure A.10: Computation Time for OSM and Full Method
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Source | SS df MS Number of obs = 9

-------------+------------------------------ F( 1, 7) = 128.37

Model | 3.1389e+09 1 3.1389e+09 Prob > F = 0.0000

Residual | 171159802 7 24451400.2 R-squared = 0.9483

-------------+------------------------------ Adj R-squared = 0.9409

Total | 3.3101e+09 8 413762534 Root MSE = 4944.8

------------------------------------------------------------------------------

t2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

N2 | 57.6682 5.089753 11.33 0.000 45.63284 69.70355

_cons | -2779.415 2126.579 -1.31 0.233 -7807.975 2249.145

------------------------------------------------------------------------------

N2=N

t2=computation time

Figure A.11: Assuming Linear Model

Source | SS df MS Number of obs = 9

-------------+------------------------------ F( 2, 6) = 55.62

Model | 3.1407e+09 2 1.5704e+09 Prob > F = 0.0001

Residual | 169392346 6 28232057.7 R-squared = 0.9488

-------------+------------------------------ Adj R-squared = 0.9318

Total | 3.3101e+09 8 413762534 Root MSE = 5313.4

------------------------------------------------------------------------------

t2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

N2 | 62.22067 18.9989 3.27 0.017 15.73204 108.7093

b | -.0049159 .0196472 -0.25 0.811 -.052991 .0431592

_cons | -3123.097 2666.14 -1.17 0.286 -9646.907 3400.712

------------------------------------------------------------------------------

Figure A.12: Assuming Quadratic Model
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Source | SS df MS Number of obs = 91

-------------+------------------------------ F( 2, 88) = 9854.42

Model | 1398614.52 2 699307.261 Prob > F = 0.0000

Residual | 6244.81599 88 70.9638181 R-squared = 0.9956

-------------+------------------------------ Adj R-squared = 0.9955

Total | 1404859.34 90 15609.5482 Root MSE = 8.424

------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

c | .0012299 .0000176 69.71 0.000 .0011948 .0012649

N | -.3061102 .0155042 -19.74 0.000 -.3369215 -.2752989

_cons | 13.26847 1.455396 9.12 0.000 10.37617 16.16076

------------------------------------------------------------------------------

Figure A.13: Modelling Computational Times in OSM

Figure A.14: Checking Normality Observed Jet Fuel Prices

70



Figure A.15: Checking Normality of Jet Fuel Option Prices
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Appendix B

Matrix Laboratory Program for OSM

B.1 2-D Programming

function fodya6

h=0.1;

t1=1;

t2=0.001;

x1=0:h^2:t1;

n=x1’;

m=length(n);

A=zeros(m);

B=zeros(m);

for i=1:m

A(:,i)= firstsol(x1(i),x1,t2);

u=A(:,i);

u1=u;

dudt=-5*0.5.*(x1(i))^2*(vola(x1(i)))...

^2.*exercise3(m,u); %evaluating the

finite differences
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of 0.5s^2 sigma^2 u_{ss}

u=dudt;

s=0.1;

a11= s.*exercise3(m,u);

u=u+0.5.*a11; % The process of

evaluating the solution of the

first split subproblem has

started here

a21=s.* exercise3(m,u);

u=u1+ 0.5.* a21;

a31=h.*exercise3(m,u);

dudt=u1+(1/6).*a11+(1/3).*a21...

+(1/6).*a31;

B(:,i)=dudt;

u=B(:,i)’;

b=0.3;

dudt=-0.5*b^2.*ex3(m,u); %evaluating

the finite differences of 0.5s^2 u_{yy}

u=u1’+dudt;

% Now we are combining

the solutions with those

of the second split subproblem

via strang

b11=s.*exercise3(m,u);
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u=u+0.5.*b11;

b21=s.*exercise3(m,u);

u=u1’+0.5.*b21;

b31=h.*exercise3(m,u);

dudt=u1’ + (1/6).*b11+(1/3).*b21 + (1/6).*b31;

B(i,:)=dudt;

% Now we are combining

the solutions with those

of the third split subproblem

via strang

u=B(i,:)’;

dudt= ex3(m,u);

u=dudt’;

b=0.3;

a=0.5;

RHO=0.5;

dudt=-a*b*RHO*0.25*2*x1(i).*ex3(m,u);

B(i,:)=dudt;

u=u1+B(i,:)’;

dudt=ex3(m,u);

u=dudt’;

dudt=ex3(m,u);

c11=s.*dudt;

u=u+0.5.*c11;
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u=u1+u’;

dudt=ex3(m,u);

u=dudt’;

dudt=ex3(m,u);

c21=s.*dudt;

u=u+0.5.*c21;

u=u1+u’;

dudt=ex3(m,u);

u=dudt’;

dudt=ex3(m,u);

c31=h.*dudt;

dudt=u1’ + (1/6).*c11+(1/3).*c21 + (1/6).*c31;

B(i,:)=dudt;

% Now combining the

solution to those of the fourth

% split subproblem(20-07-2016)

at 12:15 PM wednessday

b=0.3;

a=0.5;

RHO=0.5;

u=B(i,:);

drift=0.04;

r=0.02;

dudt=-a+RHO*(drift-r)*b.*ex3(m,u);
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u=dudt;

s=0.1;

d11= s.* ex3(m,u);

u=u+0.5.*d11; %

The process of evaluating the

solution of the fourth split s

ubproblem has started here

d21=s.* ex3(m,u);

u=u1’+ 0.5.* d21;

d31=s.* ex3(m,u);

dudt=u1’+(1/6).*d11+(1/3).*d21...

+(1/6).*d31;

B(i,:)=dudt;

u=B(i,:);%Charpits method starts here

u3=u;

CONST=u-(drift-r).^2/((vola(x1(i)).^2)*2).*x1(i).*ones(1,m);

u=u.*x1(i)+CONST;

B(i,:)=u;

u=B(i,:)’;

k=(drift-r).^2/((vola(x1(i)).^2)*2);

u=a.*2.*(1/m).*u+u3’;

u=sqrt(a/k).*2.*(1/m).*u’+u3;

B(i,:)=u;

end
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% % for i=1:floor(0.2*m*2)+1;

% % B(m-i+1,1:m)=u1;

%This loop

is deleting the values

that fall out of range due

to differencing and consequent

padding of zeroes

% % end

mesh(x1,x1,B’)

xlabel(’Stock price ’); ylabel(’volatility’); zlabel(’option price’);

title(’Option Pricing under stochastic volatility model’);

function y=ex3(m,w)

a=1;

b=m;

for i=1:m

k=a+(b-a)*rand(1,m);

t=floor(k);

z=(w(i)-w(t)).*(1/.2);

end

y=z;

function z=exercise3(m,w)

a=1;

b=m;
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for i=1:m

k=a+(b-a)*rand(m,1);

t=floor(k);

z=(w(i)-w(t)).*(1/0.2);

end

function u=firstsol(x,s1,t)

u= 0.002*erf(s1*t+x)+0.01*cosh(x-s1*t);

clc;

B.2 1-D Programming

function fodya_SecondPermutation

h=0.1;

t1=1;

t2=0.00000001;

x1=0:h^2:t1;

n=x1’;

m=length(n);

A=zeros(m);

B=zeros(m);

i=0;

while i<m

i=i+1;

A(:,i)= firstsol(x1(i),x1,t2);

u=A(:,i);
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u=AL(u’,i);

% Now we are

combining the solutions

with those of the second

split subproblem via strang

u=BL(u,i);

% Now we are combining

the solutions with those

of the third split

subproblem via strang

u=CL(u,i);

% Now combining the

solution to those of the fourth

% split subproblem(20-07-2016)

at 12:15 PM wednessday

u=DL(u,i);

B(i,:)=u;

end

B;
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mesh(x1,x1,B)

xlabel(’Stock price ’); ylabel(’volatility’); zlabel(’option price’);

title(’Option Pricing under stochastic volatility model when \lambda=2’);

filename = ’pat.xlsx’;

xlswrite(filename,B,’A1:CW101’)

function s=vola(y)

lambda=200;

s= (0.25+(1/(2*pi))*atand( lambda *(y-0.5))+15)*.5/30;

function u=CL(u,i)

% input vector should be row

h=0.1;

s=h;

t1=1;

x1=0:h^2:t1;

B=[];

m=length(u);

B(i,:)=u;

u=B(i,:)’;

dudt= ex3(m,u);

u1=u;

u=dudt’;
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b=0.3;

a=0.5;

RHO=0.5;

dudt=a*b*RHO*0.25*2*x1(i).*ex3(m,u);

B(i,:)=dudt;

u=u1+B(i,:)’;

dudt=ex3(m,u);

u=dudt’;

dudt=ex3(m,u);

c11=s.*dudt;

u=u+0.5.*c11;

u=u1+u’;

dudt=ex3(m,u);

u=dudt’;

dudt=ex3(m,u);

c21=s.*dudt;

u=u+0.5.*c21;

u=u1+u’;

dudt=ex3(m,u);

u=dudt’;

dudt=ex3(m,u);

c31=h.*dudt;

dudt=u1’ + (1/6).*c11+(1/3).*c21 + (1/6).*c31;

B(i,:)=dudt;
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u=B(i,:);

function U=CL1(M,u)

%for heat eqution

N= floor(M);

T=1;

dx=1/M;

dt=T/N;

lambda=dt/(dx)^2;

U=zeros(N+1,M+1);

A=speye(M-1)+lambda *...

spdiags([-ones(M-1,1),2*ones(M-1,1), -ones(M-1,1)], [-1,0,1],M-1,M-1);

for j=1:M+1

U(1,j)=u(1,j);

end

for n=1:N

U(n+1,1)=0;

x=A\U(n,2:M)’;

U(n+1,2:M)=x’;

U(n+1,M+1)=0;

end

U’;

mesh(0:dx:1,0:dt:1,U’)
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function u=BL(u,i)

% Input vector should be row

m=length(u);

s=0.1;

h=s;

u1=u’;

B=zeros(m);

b11=s.*exercise3(m,u);

u=u+0.5.*b11;

b21=s.*exercise3(m,u);

u=u1’+0.5.*b21;

b31=h.*exercise3(m,u);

dudt=u1’ + (1/6).*b11+(1/3).*b21 + (1/6).*b31;

B(i,:)=dudt;

u=B(i,:);

function z=DL(u,i)

h=0.1;

t1=1;

x1=0:h^2:t1;

m=length(u);

B=zeros(m);

B(i,:)=u;
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u1=u’;

b=0.3;

a=0.5;

RHO=0.5;

u=B(i,:);

drift=0.04;

r=0.02;

dudt=-a-RHO*(drift-r)*b.*ex3(m,u);

u=dudt;

s=0.1;

d11= s.* ex3(m,u);

u=u+0.5.*d11;

% The process of

evaluating the

solution of the fourth

split subproblem has

started here

d21=s.* ex3(m,u);

u=u1’+ 0.5.* d21;

d31=s.* ex3(m,u);

dudt=u1’+(1/6).*d11+(1/3).*d21...

+(1/6).*d31;

u=B(i,:);%Charpits method starts here

u3=u;
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CONST=u-(drift-r).^2/((vola(x1(i)).^2)*2).*x1(i).*ones(1,m);

u=u.*x1(i)+CONST;

B(i,:)=u;

u=B(i,:)’;

k=(drift-r).^2/((vola(x1(i)).^2)*2);

u=a.*2.*(1/m).*u+u3’;

u=sqrt(a/k).*2.*(1/m).*u’+u3;

B(i,:)=u;

z=B(i,:);

function z=AL(u,i)

%input vector

h=0.1;

t1=1;

x1=0:h^2:t1;

A=[];

B=[];

A(:,i)= u;

u=A(:,i);

u1=u;

m=length(u);

dudt=-5*4.*(x1(i))^2*(vola(x1(i)))^2.*exercise3(m,u); %evaluating the

finite differences
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of 0.5s^2 sigma^2 u_{ss}

u=dudt;

s=0.1;

a11= s.*exercise3(m,u);

u=u+0.5.*a11;

% The process of

evaluating the solution

of the first split

subproblem

has started here

a21=s.* exercise3(m,u);

u=u1+ 0.5.* a21;

a31=h.*exercise3(m,u);

dudt=u1+(1/6).*a11+(1/3).*a21...

+(1/6).*a31;

B(:,i)=dudt;

u=B(:,i)’;

b=0.3;

dudt=-0.5*b^2.*ex3(m,u);

%evaluating the finite

differences of 0.5s^2 u_{yy}

z=u1’+dudt;

function U=AL1(M)
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%for heat eqution

N= floor(M);

T=1;

dx=1/M;

x1=0:dx:1;

dt=T/N;

lambda=dt/(dx)^2;

U=zeros(N+1,M+1);

A=speye(M-1)+lambda *...

spdiags([-ones(M-1,1),2*ones(M-1,1), -ones(M-1,1)], [-1,0,1],M-1,M-1);

for j=1:M+1

U(1,j)=phi((j-1)*dx);

end

for n=1:N

U(n+1,1)=0;

x=A\U(n,2:M)’;

U(n+1,2:M)=5*4.*(x1(n))^2*(vola(x1(n)))^2.*x’;

U(n+1,M+1)=0;

end

U;

mesh(x1,x1,U)
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